
AD-A094 512 BATTELLE COLUMBUS LABS OHi F/ /
MOLECULAR INTERACTIONS WITH MANY-BODY PERTURBATION THEORY.(U)
SEP 8I R J BARTLETT AFOSR-78-3661

UNCLASSIFIED AF SR-T R1- 009 L

* EhhhEhE~E



AAAA

* ANNUAL TECHNICAL REPORT

Grant No. e7>'~~
MOLECULAR INTERACTIONS WITH

IMANY-BODY PERTURBATION THEORY

OFFICE OF SCIENTIFIC RESEARCH

Io I



tv

ANNUAL TECHNICAL REPORT

Grant No.

MOLECULAR INTERACTIONS WITH
MANY-BODY PERTURBATION THEORY

to C,,

U. S. AIR FORCE
OFFICE OF SCIENTIFIC RESEARCH

Principal Investigator:
Rodney J. Bartlett

AIR FORCE OFVICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC
ThIs techrical ripor't has 1;een reviewed and is
approved for v~ilic rtlase IAW AFR 190-12 (7b).
,; itrlbution is unlimited.

A. D. BLOSS
tchnica1 Ini'ormawtion Officer

BATTELLE
Columbus Laboratories

505 King Avenue
Columbus, Ohio 43201



UNCLASSIFIED

SECURITY CL.SSIFICATION OF THIS PAGE (When Oata Entered)

Rp~ OUENAINPG READ INSTRUCTIONS
R AT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1.-REPORT NUMB 2. GOVT ACCESSION NO. 3 RE P NTS CATALOG NUMBER

A FOOj ,6-A~ 1_______
L E fand..,4rstJoa.

- MOLECULARNTERACTIONS WITH 9 Interim
"iANY-RODY PERTURBATION THEORY,4 NG* NOG RE RTNU

7. OR~a) ORNTR

'ttodne J. /artlett .' rFOSR-78-3661

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASKAREA& WO! ,IT NUM/

Battelle's Columbus Laboratories I,
505 King Avenue 61102F 21

Columbus, Ohio 43201 L
II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AFOSR/NP X.. -_<.- , September 15, 1980
Boiling AFB i'g Lty~j 13. NUMBER OF PAGES
Wash DC 20332 -' .. . ..... 1 95

14. MONITORING AGENCY NAME & AORES rom Controlling Office) 15. SECURITY CLASS. (of thIs report)

/ UNCLASSIFIED
15a. DECLASSIFICATION DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report,

Approved for public release;
. "distributin unllmited.

17. DISTRIUTION STATEMENT (of the abstract entered in Block 20, It different from Report)

I, SUPPLEMENTARY NOTES

I

19. KEY WORDS (Continue on reverse side if nece.ssary and Identfv by block number)

Many-Body perturbation theory, ab initio quantum mechanical methods,
chemical lasers, plume detection, coupe--cluster approaches.

I.F0 ABSTRACT lCotinue on reverse side /I necessary and Identify bv block number)
1Bndn eegeinldnvaec-shell electron correlation were obtained from

many-body perturbation theory (MBPT) for diborane, borane carbonyl, and borzane.

1 Results were obtained for basis sets of double zeta quality and for basis sets
" i with polarization functions added on all atoms. The binding energies were found

to be (respectively) 35, 21, and 30 kcal/mole. Correlation effects account for

48, 62, and 32 percent of the binding. The size-consistent nature of the MBPT

method enables the computation of enthalpies of reaction for four different

reactions involving monoborane, diborane, carbon monoxide, and borane carbonyl.--

- o ~9d~-J__ -/-

, .,., ... .. .. .. .. . , ,-- .... -- _. _. . ... ...



UfLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(W"en Dota Entered)

/

When the theoretical values are corrected for vibrational zero-point energies
and the experimental data are adjusted for temperature effects, the results
agree (within 5 percent) and thus confirm the set of experimental enthalpies
for the association reaction yielding diborane. The result for the binding
energy of borazane constitutes a prediction in the absence of an experimental
value.

v.

7

I

I,,

5t/



I

I I OBaltelle

I

September 15, 1980I
Dr. Ralph Kelley
Air Force Office of

Scientific Research
Building 410
Bolling Air Force Base, D. C. 20332

Dear Dr. Kelley:

Re: Grant No.

Enclosed are six(6) copies of our Annual Technical Report on the above
grant entitled "Molecular Interactions with Many-Body Perturbation
Theory."

Sincerely,

i ~R e, Bartl ett i,

Physical Sciences Section

RJB/sp

Enc. (6)

I
r

I

50 Years O Service
1929-1979

- - ~ .-.-- ------ -.



I

I TABLE OF CONTENTS

9 Page
I. DESCRIPTION OF PROBLEMS ............... ..........

.1II. REVIEW OF RESEARCH ACCOMPLISHMENTS. .. .. .. .. .... 5

f III. PRESENTATIONS AND PUBLICATIONS .. ............ . .O10

IV. SYNOPSIS OF ORBITAL OPTIMIZATION IN
COUPLED CLUSTER THEORY .... ................ .. 15

REFERENCES ....... ............................ ... 23

APPENDIX A

ELECTRON CORRELATION IN LARGE MOLECULES WITH MANY BODY METHODS

j APPENDIX B

J THE REDUCED LINEAR EQUATION METHOD IN COUPLED CLUSTER THEORY

I AccesziO' Fo

SD .,if ot ..........

S I



I

I. DESCRIPTION OF PROBLEMS

In a wide variety of Air Force applications, highly detailed

information about atoms, molecules, and their interactions is required!
1'3 )

J This information is necessary in problems ranging from chemical laser

development, to the detection and identification of rocket plumes, to

metal clustering and aerosol formations, and even to nuclear weapons effects(1
I 3 )

Probably the most crucial component needed to understand molecular

reactions is the potential energy surfaces that serve to describe the

attractions among the atoms and molecules(.l)However, such information is

not easy to obtain. A certain amount of information about the molecular

forces near equilibrium in a bound molecule is available from spectroscopy.

Some information about the potential energy surface even in the absence of

binding can be provided from crossed molecular-beam experiments. But, in

general, potential energy surfaces are not amendable to experimental

determination. Instead, other types of experimental observations such as

Ikinetics experiments, coupled with very simple theoretical models for a

surface, are used to infer pieces of infomation about the parameters of the

U model such as what the activation barrier might be.

The most direct approach to obtaining detailed information about

a potential energy surface is offered by predictive, ab initio quantum

1 mechanical calculations. However, to make It feasible to calculate accurate

energy surfaces for molecules, much better and more computationally efficient

methods must still be developed.

One such approach, namely many-body perturbation theory (MBPT)(
4 15)

I and its Infinite-order extensions termed coupled-cluster methods (CCM)(lI,1 6 -20)

I
-I
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i offer a number of attractive features that the more traditional configuration

interaction approaches lack. (21 ) During the first two years of this grant

very efficient computer codes to perform MBPT/CCM calculations were written

and employed for the first time in large-scale ab initio calculations of

potential energy surfaces!ll 21) The successes of this effort have been substantial.

These include the determination of a complete force-field for the H20

molecule, including all force-constants through fourth-order, that is

sufficiently accurate that once improved experiments were carried out after our

calculations, many of the previously accepted values fcr the force constants

were revised to be more consistent with our predictions. (22) Also, a study of
the binding energies of the molecules B2H6-2BH3 , H3BNH3 -BH3+NH3, and

H3BCO+BH3+CO was made that predict these binding energies to within

I kcal/mole of the accepted experiments for diborane and borane carbonyl,

and made a prediction in the case of borazane in the absence of an experiment.(
14)

Earlier experiments which gave much higher values for the binding energies

of diborane and borane carbonyl than we computed are now completely discounted.

Similar successes with studies of the isomerization energy and activation

barrier of HNC-HCN!23)and CH3NC-CH 3CN 
24)the photodissociation of formaldehyde!

25)

gi and various studies of methanol, methoxy, and the formyl radical (26)attest to

the reliability of our MBPT/CCM methods.

Building upon this work supported by the AFOSR we have now4 ' carried out extensive studies of the potential energy surface for the

two inelastic collisions, O(3 P)+H 20 and 0(3 P)+C0 2, under contract to the

Air Force Rocket Propulsion Laboratory, for the purpose of obtaining
vibrational excitation cross-sections that are needed in actual detection

devices.(27)

I
t1
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I Despite the many successes we have had, there are still categories

of problems that cannot yet be attacked by MBPT/CCM. These include studies

of most excited states, reactions that break multiple bonds, and applications

to various kinds of open-shell molecules.l)To satisfy these additional

requirements it is necessary to simultaneously develop the formal theory,

write additional computer programs, and continue to make landmark applications

of our developing quantum mechanical technology. Although in many cases the

formal theory is less dramatic than the applications, the continual extension

of the theory has a greater impact on our ability to calculate accurate

energy surfaces for whatever categories of problems might emerge from the

needs of the Air Force.

Consistent with this objective, much of our work this past year

has been devoted to formal theory. This includes optimization of orbitals

within the coupled-cluster framework and developing additional mathematical

techniques to efficiently solve the non-linear coupled cluster equations.

I Additional applications to a variety of problems have also been accomplished.

In the following, Section II discusses the research objectives

of this grant, and summarizes some of the notable accomplishments made in

: |the past year. For the previous year's effort, we refer to last year's

annual report. Section III lists the publications and presentations which

I have been supported by this grant. Section IV discusses in some detail

the idea of orbital optimization in coupled-cluster theory. This is a

radically new approach of substantial scientific interest. Appendices A
a3; and B are two manuscripts recently accepted for publication. The firsc

eL I
I

I
. - I I



II

I

I discusses applications of MBPT/CCM to large molecules, while the second

reports on a new mathematical technique we have developed to efficiently

solve the non-linear equations of the type that tccur in coupled cluster

I theory.i

iI

1

I
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j II. REVIEW OF RESEARCH ACCOMPLISHMENTS

IThe overall objectives of this research program include the

following:

(1) Develop new, rore accurate and more efficient ab initio

quantum mechanical methods based upon MBPT and CCM for

determining molecular properties and particularly,

potential energy surfaces for molecular interactions.

(2) Implement these methods in highly efficient, transportable

computer codes, to enable computations on potential

energy surfaces to be made on an almost routine basis.

(3) Apply these techniques to a variety of problems that

are of interest to AFOSR, and that serve to establish

the range of accuracy for MBPT and CCM methods.

In line with these overall objectives, a number of accomplishments

have been made so far in this program. The accomplishments from the

previous year are listed in the Annual Report for 1979. Hence, we will

summarize only the additional achievements that have been made in the

past year.

b IThe main focus for our effort this last year has been formal,

I Tbeing directed toward the generalization of the MBPT and CCM theory. In

particular, the inclusion of monoexcited clusters and the theory required

for orbital optimization have been developed within the CCM model. Additional

.1
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I formal work has been directed at the multireference MBPT/CCM theory. A

I series of applications to a wide variety of problems using our previously

established computer codes have also been made to demonstrate the applicability

I of our developing methods. A summary of achievements follows.

A. The coupled-cluster theory and programs have been

generalized to include monoexcited clusters (i.e., T).

This is found to be important in obtaining correct

potential energy curves for cases where a single-

determinant reference function is not entirely

appropriate.

B. For the first time, the effect of optimizing the

I molecular orbitals in the coupled-cluster theory has

been studied. This model is similar to a multi-

configuration self-consistent field (MCSCF) approach,

*except, via CCM, one employs all single, double, and

quadruple type CI excitations. Nothing of this magnitude

I has been attempted previously. We are using this

g |method to study some unusually difficult molecular

problems.

C. A new numerical technique 28)similar to the reduced

partitioning procedure developed for eigenvalue

problems by the author some years ago,(29) has been

generalized to apply to the nonlinear coupled-cluster
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equations. This has the effect of greatly increasing

the rate of convergence when solving the equations.

I This has enabled us to obtain accurate results for

some pathological cases that could not have been obtained

by the standard iterative approach. (See Appendix B).

D. The decomposition of formaldehyde, H2CO, to radical and

molecular products and its rearrangement to hydroxycarbene

has .een studied(25 This problem is of substantial experi-

mental interest because of formaldehyde's prominence in

combustion/plume processes. The activation barriers and

heats of reactions have been obtained. In the latter case,

agreement with experiment is within + 2 kcal/mole. The

activation barrier predictions support the CI results of

Goddard and Schaefer(30) that would suggest a tunneling

mechanism for H2CO*H 2+CO.

E. A series of detailed comparisons of various MBPT models with

. CCD for the C, N, and 0 atoms and the H20, NH3, and CH4

molecules were made this year'l)These comparisons, plus a

number of others we have made, suggest that the infinite-order

CCD results differ insignificantly from the fourth-order model,

DQ-MBPT(4), for most normal cases(21)This supports

, I the predictions of the less expensive fourth-order model

,' j for larger molecules.

'I
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F. An experimentalist measured the isomerization energy of

HNC-HCN to be 10+1 kcal/mole.(3 1 ) This disagreed with our

I theoretical prediction of 15+2 kcal/mole. (24 ) To attempt

I to resolve this discrepancy, we performed calculations on

this system for a series of approximations and basis sets,

I concluding, indeed, that the value 15+2 kcal/mole is

accurate.(23) We believe this will prove to be another

case where theory has demonstrated that the experimental value

is in error.

G. In addition to the HNC HCN rearrangement, the interesting
3)

systems LiNC-LiCN and BNC-*BCN were also studied. Essentially

no barrier to rearrangement is found for LiNC- LiCN, while

BNC is found to be more stable than BCN. Our calculations

made predictions of the thermochemistry parameters for

these molecules which we hope will stimulate some

experimental work

I H. The first all-electron ab initio coupled-cluster and MBPT

calculations of benzene were made this year. This work

'j demonstrates that a molecule of this size has at least a

! I20 percent error in its correlation energy due to the

neglect of CI type quadruple excitations. (32) This

emphasizes the importance of using methods like MBPT/CCM

that properly include such higher order excitation effects

if reliable quantum mechanical calculations are to be

I possible for larger molecules. (See Appendix A.)

I
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I I. Additional calculations at the MBPT/CCM level on a

i variety of systems including Li4, CH30, HNO, and

other unusual molecules are also being made to

I predict structures, thermochemistry, and other

properties like Jahn-Teller distortions.

,4 l
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I III. PRESENTATIONS AND PUBLICATIONS

Presentations (1980)

R. J. Bartlett, "Potential Energy Surfaces with Many-Body Methods"
invited speaker, Canadian Theoretical Chemistry Conference, June 17, 1980.

R. J. Bartlett, "Many-Body Methods and Their Molecular Applications",
invited speaker, New York Academy of Sciences Conference on Quantum
Chemistry in the Biomedical Sciences, New York, June 2, 1980.

I R. J. Bartlett, "Molecular Applications of Many-Body Perturbation
Theory and Coupled Cluster Methods," Argonne National Laboratory,
Argonne, IL, January 1980.

R. J. Bartlett, "Molecular Hyperpolarizabilities: Correlated Predictions",1Sanibel Symposium on the Quantum Theory of Matter, March 11, 1980.

G. D. Purvis, "Orbital Optimization and Reduced Partitioning Method
Within Coupled Cluster Theory", Sanibel Symposium on the Quantum Theory
of Matter, March 13, 1980.

i
I
I
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I Presentations (1979)

R. J. Bartlett, "Molecular Applications of Coupled-Cluster and Many-Body
Perturbation Methods", invited talk, Nobel Symposium on Many-Body Theory,
Lerum, Sweden, June 11, 1979.

R. J. Bartlett, "Accurate Applications of Correlated Ab Initio Quantum
Chemistry to Realistic Chemical Problems", Univ. of K~iituc-y Lexington,
Ky., February 2, 1979.

R. J. Bartlett, "Coupled-Cluster Theory for Molecular Potential Energy
Surfaces", invited speaker, Sanibel Symposium on Quantum Theory of Matter,
Palm Coast, Florida, March 12, 1979.

R. J. Bartlett, "Coupled Cluster Theory, Many-Body Perturbation Theory and
Their Molecular Applications", Ohio University, Athens, Ohio, May 6, 1979.

R. J. Bartlett, "Have Ab Initio Quantum Mechanical Applications Finally
Arrived?", University of Floida, Gainesville, Florida, May 11, 1979.

R. J. Bartlett, "Accurate Applications of Correlated Quantum Chemical Methods
to Real Chemical Problems", Mount Sinai School of Medicine, New York, New
York, June 4, 1979.

R. J. Bartlett, "Many-Body Perturbation Theory", Aarhus University, Aarhus,
Denmark, June 18, 1979.

R. J. Bartlett, "Have Ab Initio Quantum Mechanical Applications Finally
Arrived?", University T New Orleans, New Orleans, LA, October 5, 1979.

* 5 IR. J. Bartlett, "Have Ab Initio Quantum Mechanical Applications Finally
Arrived?", Tulane Univesit-y ,New Orleans, LA, October 8, 1979.

R. J. Bartlett, "Have Ab Initio Quantum Mechanical Applications Finally~Arrived?", Millsaps CoMgeJackson, Mississippi, October 10, 1979.

R. J. Bartlett, "Have Ab Initio Quantum Mechanical Applications Finally
Arrived?", University F Ar-ansas, Little Rock, Arkansas, October 12, 1979.

I
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Presentations (1978)

R. J. Bartlett, "Molecular Applications of Many-Body Perturbation Theory",
invited talk, American Conference on Theoretical Chemistry, Boulder, Colorado,
June 29, 1978.

i R. J. Bartlett, "Theoretical Contribution to the Plume Enhancement Problem",
invited talk, High Altitude Infra-fed Radiation Workshop, Air Force Geo-
physics Laboratory, Lexington, Massachusetts, August 3, 1978.

R. J. Bartlett, "Beyond Hartree-Fock: Perturbation Theory", invited talk,
at the National Resource for Computation in Chemistry Workshop on "A Study
of Post Hartree-Fock: Configuration Interaction", Berkeley, California,
August 14, 1978.

R. J. Bartlett, "Many-Body Perturbation Theory and Coupled Cluster Methods
for Molecules", Department of Applied Mathematics, University of Waterloo,
Waterloo, Canada, November 13, 1978.

R. J. Bartlett, "Is Size-Consistency Important in Molecular Calculations?",
Introductory Lecture, Sanibel Symposium on the Quantum Theory of Matter,
Palm Coast, Florida, March, 1978.

R. 3. Bartlett, "Is Size-Consistency Important in Molecular Calculations?",
Midwest Theoretical Chemistry Conference, April, 1978.

G. D. Purvis, "Comparison of RHF and UHF Based Correlated Methods for the
N2 Potential Curve", Midwest Theoretical Chemistry Conference, April, 1978.

G. D. Purvis, "Comparison of RHF and UHF Based Correlation Methods for the
| N2 Potential Curve", American Conference on Theoretical Chemistry, June 28,

1978.

& I
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I Publications (1980)

I R. J. Bartlett and G. D. Purvis, "Molecular Applications of Coupled Cluster
and Many-Body Perturbation Methods", Proceedings of Nobel Symposium on

I Many-Body Theory, Physica Scripta 21, 255 (1980).

R. J. Bartlett and G. 0. Purvis, "Electron Correlation in Large Molecules"f in press, Proceedings of New York Academy of Science. (Appendix A)

G. D. Purvis and R. J. Bartlett, "Reduced Linear Equation Method in Coupled
Cluster Theory", to be published, J. Chem. Phys. (Appendix B)

L. T. Redmon, G. D. Purvis, and R. J. Bartlett, "Correlation Effects in
the Isomeric Cyanides, HNC-4HCN, LiNC-'LiCN, and BNC-+BCN", J. Chem. Phys.
72, 986 (1980).

G. Adams, G. Bent, R. J. Bartlett, and G. D. Purvis, III, "Formaldehyde:
Electronic Structure Calculations for the SO and T, States", J. Chem. Phys.,
in press.

Publications (1979)

R. J. Bartlett, I. Shavitt, and G. D. Purvis, "The Quartic Force Field of
H20 Determined by Many-Body Methods that Include Quadruple Excitation Effects",
J. Chem. Phys. 71, 281 (1979).

L. T. Redmon, G. D. Purvis, and R. J. Bartlett, "Accurate Binding Energies
of Diborane, Borane Carbonyl, and Borazane Determined by Many-Body Perturba-
tion Theory", J. Am. Chem. Soc. 101, 2856 (1979).

R. J. Bartlett and G. D. Purvis, "Molecular Hyperpolarizabilities I.
i |Theoretical Calculations Including Correlation", Phys. Rev A20, 1313 (1979).

G. Adams, G. Bent, G. D. Purvis, and R. J. Bartlett, "The Electronic
1 |Structure of the Formyl Radical, HCO", J. Chem. Phys. 71, 3697 (1979).I' j

G. D. Purvis, and R. J. Bartlett, "The Potential Energy Curve for the XIz +

State of Mg2 Calculated with Coupled-Pair Many-Electron Theory", J. Chem.9
Phys. 71, 548 (1979).

J
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I
Publications (1978)I

R. J. Bartlett and G. 0. Purvis, "Many-Body Perturbation Theory, Coupled
Pair Many-Electron Theory, and the Importance of Quadruple Excitations for
the Correlation Problem", Inter, J. Quantum Chem. 14, 561 (1978).

i I J. W. Kenney, J. Simons, G. D. Purvis, and R. J. Bartlett, "Low-Lying
Electronic States of Unsaturated Carbenes", J. Amer. Chem. Soc. 100, 6930
(1978).

I L. T. Redmon, G. D. Purvis, and R. J. Bartlett, "The Unimolecular Isomeriza-
tion Reaction of Methylisocyanide to Methylcyanide", J. Chem. Phys. 69, 5386

1 (1978).

R. J. Bartlett, "Perturbation Theory", Post-Hartree Fock: Configuration
Interaction Workshop, NRCC, LBL-8233 (1978).

G. D. Purvis and R. J. Bartlctt, "The Potential Energy Curve for the Xl +

State of Mg2 Calculated with Many-Body Perturbation Theory", J. Chem. Phs.J 68, 2114 (1978).
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I
IV. SYNOPSIS OF ORBITAL OPTIMIZATION IN COUPLED CLUSTER THEORY

A new idea which has been developed over the second year of this

I grant is the optimization of molecular orbitals while simultaneously carrying

out coupled cluster calculations. This approach is similar in philosophy

to multi-configuration self-consistent field (MCSCF) theory, but differs

substantially in numerous other respects.

The traditional MCSCF approach takes a small number (typically

5-20) configurations which we will designate as {Dk}, composed of a set

I of molecular orbitals,{xi}. The wavefunction then takes the form

IPMCSCF I C Dk

where each Dk is a determinant (or symmetry adapted combination of

determinants) of the general form

I,
Dk =A(xl(l )X2(2) ... X(i) ... Xb(j) ... X (n))

I Various replacements (like xa(i) and Xb(j)) of molecular orbitals

which are occupied in D1 (often the SCF determinant) give rise to the

usual CI single, double, etc. excitations. The linear coefficients Ck

are optimized by using the variational principle in a small CI eigenvalue

* problem. This is the multi-configuration step. The SCF part occurs when

the coefficients {cu} in the molecular orbitals {xi},

Ixi : IC uOuI I u

I for 0u some primitive, usually atomic orbital basis set, are also simultaneously

gI optimized. This procedure is particularly useful in types of open-shell

I

'4.
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problems, and in descriptions of bond breaking when the form of the

molecular orbitals can change significantly.

However, there are a number of disadvantages with the MCSCF

I method. The small number of configurations have to be carefully chosen

if correct answers are to be obtained and this requires a difficult and

time consuming trial and error procedure. As a consequence, MCSCF methods

have notoriously bad convergence properties.

The most important weakness from our viewpoint pertains to MCSCF's

failure to be size-extensive. That is, the calculations do not scale

properly with molecular size. This occurs due to the method using a

variational CI step, which makes it suffer from the same weakness as any

truncated CI, inspite of optimizing the orbitals. MCSCF's failure to be

size-extensive causes problems ranging from decreasing its applicability

to large molecules to correct predictions of dissociation energies. The

various difficulties encountered with nonsize-extensive methods are documented
;(11 ,21)

! I in detail elsewhere.

Recently, a series of papers have appeared that develop an approach

I for efficiently optimizing the orbital coefficients,{cu}, and the CI

coefficients {Ck} simultaneously. (33"3  This approach exploits an idea due to

Levy of using, unitary exponential operators to perform the orbital

rotation. The same approach can be used within the coupled-cluster framework

) mwhich will have the advantages; (1) that all results are size-extensive; and

m (2), that the configuration expansion is not just a few determinants, but

I consists of all single, double, and (via the nonlinear coupled cluster scheme)

* Ithe quadruple excitations.

I
I
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I Consider the hamiltonian H, related to the usual electrostatic

hamiltonian byI
H = UtHU (1)I

where U is a similarity transformation, which we will choose to be unitary.

IThe unitarity ce,. be ensured by defining

U = ein = eC (2)

For n a hermitian operator, which makes K skew hermitian (i.e., Kt =

H = e- HeK (3)

where

K (X X - X tX) (4)

r>srs r s r

The eigenvalues of any hamiltonian of the form in Eqs. (1) and (3) are

unchanged by the transformation, so this transformed H may be treated

S just as the ordinary hamiltonian, although an additional degree of flexibility

Iis introduced by the transformation.

Employing the coupled-cluster ansatz,

T T I +T2 +

n ,r t ... xlxtaxb .x X x (5)
n ijk ." k

I

II

II
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I for o a single determinant reference function and cc intermediately

normalized, we can back-project CC onto a sufficient set of single, double,

I etc., excitations to give the CC equations,

ai + I b ijtj + I CijktJtk + d = 0 (6)

3 j,k i,k,l dijkltjtktl "

I
for the various amplitudes {ti} in the operator T. The quantities ai,

b c ijk, etc. are combinations of integrals relative to the molecular

orbital basis set.

If we limit ourselves to T=T 2, then we obtain the coupled cluster

doubles (CCD) model, which terminates Eq. (6) after quadratic terms, and

requires that we determine as many amplitudes tk = t.. as there are distinct
J

double excitations. If we approximate T=T1 + T2, then T will occur to the

fourth-power, T2 quadratically, and the coupling terms TIT 2 and T,2T
2 will

also contribute. In this case, we have both the single excitation amplitudes,

a, and double-excitation amplitudes to obtain. The energy is given from the

I Schrondinger equation by

ab

I E = <¢oHh CC> <€oi HeT(o , (7

ii I
I Ii <ij l l ab> tab+ <ilhla>t,

J>j i,aI a>b

m + X <ijjjaj> ta + 1/2 ' <ijllab> tb
5i i,a j 1 i,a j,b i3

II
I

I

bq
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I or

E I <ijIjab>(ta + tatb) + I <iIfIa> t i  (8)
i>j i i j i ,a

I a>b

where the usual Fock operator expression is introduced.

Eq. (8) provides the energy given the amplitudes for double
I ab

excitations, tj, and single excitations t.i determined by Eq. (6). The

I molecular integrals and amplitudes in Eq. (8) pertain to the molecular

orbitals associated with the transformed hamiltonian, H. These orbitals

are permitted to change to assume a more optimum form by exploiting the

I transformation in Eq. (3). Since the coupled cluster results are invariant

to any unitary transformation that only mixes excited orbitals (i.e.,

I a,b,c,d,etc.) or occupied orbitals (i.e., i,j,k,l, etc.) among themselves,

the changes due to the transformation arise by mixing the occupied orbitals

with the excited orbitals. The transformation matrix Krs } can be

I determined from the Hansdoff expansion by imposing a stationary condition

on the orbitals.

I From Eq. (7) and Eq. (3), we have

E 0 <ole-HeKICC>  (9)

I Invoking the Hausdorff expansion through terms second-order in K,

g E < oH l4cc> + q 0 [H,K],wCc>+/2< i[[H,]K]VcC (10)

0

I
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I The stationary condition is accomplished by varying E with respect to the

operator K. Hence,

E = 0 = <¢oI[H,UKJI cc> + 1/2 < 0I[[H,6K]K]I cc>

(II)

+ 1/2 <o0I[[H,K]6K]Iwcc>

Eq. (11) defines the matrix elements, Krs' in the operator <, via

= 0 = {j[H, Xs
;Krs XrX Xr] CC>

+ 1/2 < ol[[H,XX s - X'X ]K]ImCC> (12)

+ 112 <¢o 1[H,,](X tXs Xr)]11CC>

1/ L~~ r[ ,K(rs -s r cc>

Since K appears linearly in Eq. (12), by working out the

commutator expressions, an equation for the matrix elements {K rs} is

ii obtained. With these quantities defined, the transformation matrix in

Eq. (1), U = eK, is determined. Hence, Eq. (12) provides < for stationary

values of the energy (assuming the transition state form). This defines

I a new set of molecular orbitals, u : U vu" All molecular integrals are

S transformed to this new set. Then the coupled-cluster equations, Eq. (6)

can be solved again for the transformed orbitals. Successive repetition

of this procedure should give a coupled-cluster solution with an improved

molecular orbital basis set.
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I |2
Since,

Scc = eiT > 1 + T +T + 1/2T2 + 1/2T2 + + * > (13)

the transition state formula of Eq. (10) only permits T1 and T2 to occur

linearly in the determination of K, since the other terms would have vanishing

matrix elements with € o>. This seems like a reasonable approximation for most

problems, but in pathological cases the quadratic and higher terms become

increasingly import nt, and it is just such pathological cases, where the

orbital optimization is most useful.

Alternatively, variational expressions of the form

E : < cCleKHe KICc>I< CCICc> (14)

can be employed to determine equations for the {Krs } matrix elements.

This has the advantage that a rigorous upper-bound expression is

so the orbitals should be "better", and that higher powers of T operators

would contribute to this determination. But it is still necessary to truncate
the Hausdorff expansion. Hence, the method is at best quasivariational.

Furthermore, it is not clear at just what levels appropriate for the

trunction of T or K. Addltional problems pertain to T being a non-

hermitian operator while K has to be chosen-to be hermitian to maintain

the unitary transformation property, and that unlike the usual coupled-cluster

equations, whose commutation using the normal T, i.e., e'THeT(¢o > temnesa

four-fold commutations, a unitary T or K operator requires an infinite

commutator series.

Ii
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IWe are currently investigating the relationships among the several

i different ways of imposing variational conditions on the orbital optimized

coupled-cluster equations.

I

i
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I ABSTRACT

A goal of quantum chemistry in biomedical sciences is to provide

accurate calculations of molecular interaction among biochemical molecules,

I drugs, carcinogens, etc. In this effort, there is a natural progression from

semi-empirical quantum chemistry, to ab initio self-consistent field theory,

to methods that properly include electron-correlation. As ab initio theories

continue to develop, many more problems of biomedical interest can be

addressed by accurate correlated methods. The intent of this contribution is

to discuss many-body approaches to the correlation problem, i. e., many-body

perturbation theory (MBPT) and coupled-cluster methods (CCM). Unlike most

configuration interaction (CI) methods, MBPT/CCM offersa number of important

features in the extension to larger molecules. These include the proper

dependence of the correlated calculation on the size of the molecule (i.e.,

size-extensivity). This has significant consequences for predictions of

ground and excited-state properties. These features will be illustrated by

J applications to selected molecules. It will be demonstrated that MBPT/CCM

offers a natural generalization of SCF theory that is formally suitable for

Iapplications to some of the molecules that occur in biomedical studies.

; I
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I. INTRODUCTION

I In the applications of quantum chemical methods to problems involving

biochemical molecules and their interactions, there is a natural progression

from empirical or semi-empirical models and methods to ab initio self-consistent

field (SCF) approaches, and eventually, to ab initio approaches that properly

include the effects of electron correlation. The purpose of this contribu-

tion is to discuss the many-body methods(115) (i.e., many-body perturbation

j theory (1 3 ) [MBPT] and coupled cluster methods (4- 7 ) [CCM]) for including

electron correlation. The emphasis is on the advantages that these methods

offer over the more traditional Configuration interaction (CI) approaches in

large molecule applications.

Semi-empirical models and methods, which should be used synergistically

with experiment, are most properly employed to investigate trends among a

series of similar molecules. Such methods can be used for rather large

molecules relatively inexpensively, and are thus finding wide use in bio-

I indrug(16-20)
chemistry and particularly in drug design. On the other hand, in principle

I ab initio methods can provide hard, quantitative results for molecular systems,

which can be potentially used to complement various experimental methods by

Iproviding answers to classes of problems that are not as amenable to experiment.
! IAn example would be identifying the transition state and activation barrier

in a reaction.

In practice, however, ab initio quantum chemistry suffers from

I severe limitations, that have only permitted highly accurate results to be

'I obtained for comparatively small molecules. These limitations are basically

5 of three types: (1) Number of degrees of freedom in molecular systems;

I

I
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1 (2) limited size of basis set that can be used; and (3) required degree of

g accuracy of the ab initio approach.

In the first category, the problem essentially revolves around

I the Born-Oppenheimer (or fixed nuclei) approximation, since the calculation

J of the electronic structure and energy must be repeated for each choice of

coordinates for the nuclei. Limitations (2) and (3) pertain to each of these

I calculations while limitation (1) refers to the number of times the calcula-

tions must be repeated. For example, mapping out a potential energy surface

for even a four-atom system with 3N-6=6 degrees of freedom, and computing

10 points for each degree of freedom, would amount to a million calculations.

In quantum biochemistry, fortunately, one is not often interested in a complete

energy surface, but usually only a few crucial bond lengths and angles that

need to be optimized, but this is still a formidable problem. The development

of SCF(21l23) and correlated gradient methods (24-26) is a welcome addition to

I the quantum chemist's repetoire, but even these techniques are only applicable

.1 to a few degrees of freedom.

To take an example in quantum biochemistry, consider a solvated

I molecule where it is recognized that the solvation characteristics are

l I partially responsible for the conformation of the molecule which can directly

affect a highly specific interaction. The only feasible approach to such

a problem at present is the determination of analytic model potentials of the
iLennard-Jones, generalized Morse, and other types, with parameters deter-

mined empirically, or perhaps from highly accurate quantum chemical

I calculations of the component pieces of the larger system.(28,29) Then,

these potentials can be used to handle most of the dynamical movement of the

molecule and solvent, allowing the more accurate quantum chemical methods

{
I -
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I augmented by gradient techniques to focus on the most crucial active site

interactions. The results of this procedure, however, are no better than

the accuracy of the individual calculations which are subject to limitations

(2) and (3).

In Figure 1 is shown a schematic drawing that illustrates the

dependence of an ab initio quantum chemical prediction on basis set and

Icalibre of method. Just improving the basis set or method is not enough,

but rather a systematic improvement in both is required.

Considering the basis set problem first, and depending upon the

property of interest, it is a matter of opinion at Vijst how many basis

functions are required to obtain good SCF results for molecules; but, certainly

one would want at least a minimum basis set of one Slater orbital (or contracted

1 Gaussian orbital, i.e., SZ - single zeta) for each electron and probably two

(DZ, double zeta) or more (DZP, double zeta + polarization). The number of

molecular integrals needed to do an SCF calculation rises formally as n
4

3 where n is the number of basis functions although for sufficiently large

2
molecules this dependence can be reduced to n2. The largest SCF calculations

I which have been done employ no more than %300 functions. This imposes a

I limit of at most 300 electrons, or more realistically "100 to 150 electrons

explicitly considered.

The problem is further compounded when electron correlation is

included. Except for second-order perturbation theory which will be considered

in more detail in Section IV, correlated methods have a dependence on the

*. I number of basis functions of 'n6. Again, it is possible to reduce this by

maybe two-orders of magnitude for sufficiently large molecules, but it is

I
I1
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evident that even fewer problems can be studied at the correlated level than

at the SCF level.(3
0 ,31)

There has yet to be a really good idea for eliminating the basis

set problem in quantum chemistry. Completely numerical SCF calculations

have only been accomplished for a few diatomic molecules,3 2 ) and nothing

I of general utility has yet emerged. At the cost of using unrealistic

potentials, the numerical procedures of the type used in MS-X have had some

success. From the viewpoint of basis set quantum chemical computations

the development of effective potentials for the chemically inert electrons

in heavy atom molecules is very useful.( 34 38) Also, Gaussian lobe functions (3 9 )

chosen to represent the bonds in a molecule rather than located on the

various atomic centers have reduced the number of basis functions while

simplifying the calculations of the integrals. (40) Various integral

approximations(3 1) and other clever schemes can also aid in making the calcula-

I. tions more efficient, but the basis set problem remains a fundamental limitation.

I The third limitation above, as illustrated in Figure 1, pertains to

the degree of accuracy of method that is required for the property of interest,

I which is the main concern of this contribution. Generally, SCF theory is

considered to be adequate (+ 10%) for molecular conformations, equilibrium

molecular structure, and first-order properties, i.e., properties obtained3
3! as an expectation value over the SCF density, such as the electrostatic

potential or dipole moments. Oh the other hand, correlated methods are

considered absolutely necessary to predict electronic and photoelectronic

£ I spectra, to study binding energies and other thermochemical quantities in

I|
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reactions where bond breaking is occurring;and,most second- and higher-order

properties like polarizabilities, sheilding constants, magnetic succeptibilities,

etc. Since many questions in quantum biochemistry revolve around one or

another of the properties that need an accurate treatment of electron correla-

tion, it is important to consider the characteristics that a correlated method

should have if it is to be applied to the large molecules that occur in

quantum biochemistry.

A few desirable characteristics for such a correlated approach

are that the method should be

* size-extensive: (i.e., should scale properly with the size of molecule)

@ generally applicable to a wide class of problems; (i.e., avoid

specific formulations or choices of configurations.)

* efficient and cost-effective (i.e., provide large correlations

corrections inexpensively)

* applicable to open-shells and excited states;

* able to correctly separate a molecule into its fragments.

*I Another condition that one might expect is that the method be variational,

5 giving an upper bound for the total energy. Lacking a coordinate lower bound,

we believe this is an unnecessary restriction since the quantities of interest

Iin quantum chemistry are invariably energy differences like binding energies,

q which possess no rigorous variational properties even if the individual

calculations are variational. Furthermore, except for a full CI, and a few|

i
I
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other isolated cases (generalized valence bond, e.g.) a variational

requirement is not consistent with the size-extensive condition above, which

is felt to be much more important to satisfy for large molecules.

At the present state-of-the-art in correlated theory, the first

three conditions are easily accomplished with MBPT. Any approach based upon

the linked-diagram theorem is size-extensive. A large class of problems can

be studied with single reference MBPT/CCM calculations provided that RHF

(of a UHF open-shell solution) is an adequate starting point.

For the cost-effective property, it will be shown that second-order perturba-

tion theory, which is the simplest MBPT approximation, typically accounts

for -.90 percent of the correlation energy in a basis set and significantly

improves the SCF predictions of dissociation energies and molecular geometries.

Since this requires only marginally more effort than an SCF calculation, since

it is size-extensive,and has rather general utility, it is a very attractive

lowest-order approximation.

| The fourth requirement can be handled with many-body approaches such

as equation-of-motion techniques,(42-44) or with CI, and the fifth

I is currently most easily achieved using CI methods. In the last case, the

MBPT/CCM theory exists for this problem, but has not yet been implemented

in a general purpose program.(45-47) In many cases, a UHF reference func-

tion will permit correct separation, but the path toward the separated limit

is not always accurate.
(9)

I

I 4
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In Section II, the size extensive property of MBPT/CCM will be

discussed in some detail since this is an extremely important condition

I for potential applications of correlated methods to large molecules.

Section III will present a brief discussion of the ideas in many-body theory

that are important for large molecules, while the final section will focus on

some applications to benzene to demonstrate the nature of correlation effects

due to higher excitations in this prototype system. In this section emphasis

will also be placed on the accuracy of the simplest approximation, second-order

perturbation theory, which typically provides a very large part of the electron

correlation effect as an inexpensive by-product of the SCF calculation.

I
I

I ....
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iII. SIZE-EXTENSIVITY IN MOLECULAR CALCULATIONS

Probably the best way to illustrate the importance of quantum

mechanical methods that scale properly with the size of a molecule is to

consider the model problem of a lattice of separated electron pair bonds,

such as H2 molecules, since this serves as a first approximation to any large

molecule. This problem has been worked out by several investigators,(48,49 'II)

but it is pertinent enough to the discussion that it is worth presenting a

version here.

Assume the H2 molecules are sufficiently far apart or separated

by barriers so that they can be considered to be noninteracting. For sim-

plicity, we will further assume that the component set of molecular orbitals

for each H2 molecule are natural orbitals so that single excitations in the

H2 wavefunction need not be considered. Then the intermediately normalized

wavefunction for each molecule i, may be written,

M0 MMXM M (1)M(i) : 0(i) + xM(i)(I

M
Iwhere t 0(i) is the first natural determinant (close to the Hartree-Fock

solution) and M(i) is a sum of doubly-excited determinants including their

appropriate coefficients. The norm of the function in Eq. (1) is 1 + S, where

I

M M
5(i) M ~ 'IX (i(2)

op M MXMM 3

.00
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The wavefunction for the lattice is

I L = N M M

i i=l

Antisymmetry is disregarded since the molecules are noninteracting.

With HL = JH(i), the energy of the lattice

EL = LHL = MNEH (5)

(DL L)

where E~ is the energy of the H molecule. With a = <€(i)IH(i)Ix (i)>,

which is essentially the correlation energy of the molecule,

M  M
EH E0 B .

(6)H~2 E

A method is said to be "size-extensive" if the total energy calculated by

I the method is appropriately linear in N, as in Eq. (5).

Notice that the product wavefunction in Eq. (5) includes quadratic

and higher product terms like xM (i)x M(j), which correspond to simultaneous

S I double-excitations on different centers, but are quadruple and higher-

excitations in a super-molecule CI description. Since these terms arise

I from disjoint double excitations, they are fundamentally simple, but the

standard CI framework is not able to exploit this inherent simplicity. This

causes an innate error in truncated CI that becomes most important for larger

I molecules.

ILi'
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To investigate this, we can consider a reference wavefunction for the

lattice of the form

T n Mi) (7)

with energy

N
EL EM(i) N EM  (8)

0 00

Using this reference function, the double-excitation CI (D-CI) wavefunction

for the lattice is constructed as
N

L L N L
Dc o 0 k-l k  (k)

N
=o(1) (2)...o(N) + I ck oXM(k)/to(k) (9)

TL + c N T L(k)
0 k=l

The weighting coefficient, c, is the same for each H2 molecule in

a noninteracting lattice. Using the expressions,

j (XM (i)IxM j,) = SiS (10)

(X (i)H Ix W>) 13j 2

S AE = E L-NEM
0

j
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I it follows that

I(<V IHL'VL(k) >  = (11)

< (~L HLTL M

I L(K)IH L L(Z)> = 6 k[NSEM + (S-)B] (12)

From these matrix elements, the D-CI secular equation becomes

AE - NcB = 0 (13a)

(8 - [SAE + (S-l)a]}c= 0 (13b)

Solving Eq. (13) simultaneously for AE and c,

AE -[lS)+iS)2 + 4SN)] Neff8  (14)
D-cI =  1 S); (14)

2S N-

I The positive sign is required since AE<o and s<o. Since the correct

AE NB, D-CI is not size-extensive.

With the aid of a value for S in Eqs. (2) and (14) it is possible to

I get some feel for the size of these effects. From a natural orbital study by

Davidson and Jones(50) of the 50 term Kolos-Roothaan( wavefunction for H2

at R = 1.40, S for H2 is 0.0181. Some representative values are shown in

I Table I, along with values for a lattice of He atoms for comparison (SHexO.0083).

It is apparent that the error in the correlation energy as determined by D-CI

5 Ican be significant even for modest numbers of electrons. It is also apparent

that the errors are greater for typical covalent bonds than inner-shell electron
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I
pairs as in He atoms. In fact, we will find that Table I can provide

a rather accurate estimate of the effects of higher excitations simply

by counting the number of electrons in covalent bonds and inner-shell

electron pairs.

Since the product terms x M(i)x M(j) correspond to quadruple

excitations in a super-molecule CI, while triple products are hextuple

excitations, etc., the size-extensive property of MBPT/CCM, that is a

consequence of the linked-diagram theorem, (1,2) is essentially a result of

a more proper treatment of quadruple and higher excitations than in CI.

Hence, a statement that size-extensivity is important in correlated

calculations, is equivalent to the statement that quadruple and higher-

excitations are important. Since the number of configurations in CI are

proportional to the number of basis functions raised to the level of

excitation included, the number of quadruple excitations generated from 100 basis

functions would require -(100) 4 or lO8 configurations. Hence, better

computational methods for including effects of higher-excitations in

Icorrelated calculations are extremely important. Many-body methods tend to

I take the intelligent viewpoint that removing the erroneous terms (i.e., unlinked

diagrams) in D-CI is preferable to including higher-excitations. In practice,

1 .this viewpoint leads to computationally more tractable equations that are

closer to those in D-CI.
(7)

Since the correct density is in error by the neglect of the product

S (49)
terms in the wavefunctions, further analysis discussed elsewhere,''

demonstrates that the density matrix obtained from a truncated CI reduces to
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just the density computed from the reference function. If the latter is

an SCF function we have

Lim TCI . SCF
N- (15)

Similarly, for an excitation energy,
(49 )

Lim (E TCI _ E TCI  ESCF - CF(16)
N- o ~ )E

Hence, size-extensivity affects more than the total energy.

One additional consequence worth mentioning is that in a typical

reaction,

A+B C+D (17)

the heat of the reaction, AHrxn : AHf(C) + AHf(D) - AHf(A) - AHf(B).

However, if these individual quantities are determined by a truncated CI

this simple addition is not entirely justified, since the truncated CI

j ignores the simultaneous excitations that prohibit aHf(C+D) at RCD- from

being AHf(C) + &Hf(D). In practice, this frequently requires that one

' 1compute the super-molecules C + D and A + B in CI to make the energy
difference most accurate. This should be contrasted to predictions made with

a size-extensive method where a table of results for species obtained at a

given level of approximation may be added and subtracted just like the

experimental values.

.4A
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III. SYNOPSIS OF MANY-BODY THEORY

I The theory of MBPT/CCM has been discussed in detail in several

places. ( - 7) In particular reference [7] provides a fairly detailed mathe-

Imatical description from the viewpoint taken in this article. The theory

as originally developed, uses second-quantization and diagram techniques,

which are unfamiliar to many-quantum chemists, and this tends to camouflage

the important concepts that emerge from the many-body approach. Instead of

presenting any detailed mathematical development here, we will sketch the

basis for the two significant concepts that emerge from MBPT/CCM, namely

the linked-diagram theorem, which guarantees size-extensivity, and the cluster

decomposition of CI excitations into separate, more physically satisfying

pieces that lead to tractable equations for including the effects of higher

excitations. Consult reference [7] for detailed equations, and the original

references ( 1-6 ) for the complete formal development. For simplicity, in the

following we will limit ourselves to a single reference function such as an

unrestricted Hartree-Fock (SCF) solution. Various versions of the multi-

. reference function theory are available.
(4 5-4 7 )

It is well-known that one way to solve a CI eigenvalue equation

Iis with perturbation theor. ( 5 2 ) Using the Rayleigh-Schrodinger form, we

can separate the hamiltonian H = H + V, where Ho is the sum of the SCF

one electron hamiltonians and V is the two-electron part minus the SCF effective

one particle hamiltonian, then we have

J

eb



15

I Ho%  = Eo~
H00 0 E0 0

Ho koc.. = Eabc.. 0abc.. (18)

lik" ijk" ijk**

for the SCF solution, and Dabc... the various determinants that can be
for o te SC soutio, ad ik..

* formed by replacing occupied SCF orbitals with excited SCF orbitals. The

CI eigenvalue through fourth-order, then becomes

E = Eo+ <IJV O%> + < JVRoVI, > + <O VRo(V-<V>)RoViy (1)

+ < (VRo(V-<V>) Ro(V-<V>) RoVjo > - <2VRoVI%><%IVR V(%>

The resolvent, R0, has the expression

Ro= l>hIE -H >_ < J (20)

where Jh> is composed of all the CI excitation Duc . Even though Ih>

I is formally complete,Slater's rules for matrix elements chooses from all

I possibilities only the few that have nonvanishing contributions.

Subject to an SCF reference function, only double-excitations can

I mix across V with 0 , so the second- and third- order terms in Eq. 09)

involve only double-excitations. The first of the two terms in fourth-order,

however, can mix single, double, triple, and quadruple excitations at the

middle R0, although the second fourth-order term (i.e., the renormalization

g term) still has no contributions except from double excitations.

From the model problem of separated H2 molecules presented in

the previous section, it is easy to check whether each of the terms in

Eq. (19) is size-extensive. Considering the second-order energy of the H2

latticeI
I
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IE = <IVRoVlIo> (21)

as an example, we have from Slater's rules

L nocc nexc 2I E= 1/4  ab <ij Jab>/(Ei + - -a b) (22)
2 i~j a,b+ E-Eb

The notation <iji lab> = <ijlab> - <ijiba> = (Talbj) - (iblaj), and (el}and {E al

are the SCF orbital energies for theoccupiedand excited orbitals, respectively.

I Using a little algebra,

L 2E2 = 2 . [ [(ialjb) - (ialib) (ibjja)](, i + -j - Ea - (23)
i<j a<b

Since this expression is invariant to any unitary transformation among

degenerate orbitals, we may choose the orbitals to be localized on the

H2 molecules in the lattice to make the argument most transparent. In this

case the only nonvanishing integrals have the charge distribution (ia), (jb),

(ib) or (jc) on the same H2 molecule, otherwise the terms would vanish.

5 Hence, it follows that

I EL = NEM (24)
*2 2

I and second-order perturbation theory is size-extensive. It can be similarly

shown that this is also true for E3.

A II

Ii
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Now consider fourth-order . The renormalization term is composed

of an E2 term and a similar term A = < 0 IVR2VI~o> which differs from E2 only

by having the denominator squared. Since

I
EL =NE M A L = P(25)2 21

The product of the two has an N2 dependence, which is erroneous. If E4 is

to be size-extensive, the first term in E4, must also have an equal and

2opposite N dependence to cancel out these uncharacteristic terms. The single-,

double-, and triple-excitation contributions to the first part of E4can

be shown to be size-extensive. Hence, to resolve the problem, it is necessary

to consider the quadruple excitation contributions. Following a great deal of

algebra,7) the quadruple excitation part, E4,may be written in the form,

EQ = E2A + Q (26)

where Q is properly size-extensive. Hence, E2A cancels the renormalization

term and with it, the erroneous N dependence. This is the substance of the

-Ilinked-diagram theorem. The algebraic analysis that leads to Eq. (26),

1 represents Q as linked diagrams, while E26 corresponds to unlinked diagrams.

'i I A similar analysis will apply in all higher orders which is the linked-

diagram theorem.(2 ) This provides the expression for the energy,

E = Eo + <¢0oV[(Eo-H)'v]lJ o>L (27)

Iwhere L limits the terms to only linked-diagrams.
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It should be evident, that if quadruple excitations had not

I been included in E4, then the E2A term with the erroneous N2 dependence would

remain. This is exactly what happens when a truncated CI calculation is made.

Limiting the configurations to single- and double-excitations, for example, will

necessarily retain these erroneous terms destroying the size-extensivity of

the method. If quadruple excitations were to be included in the CI, the result

would be size-extensive through fifth-order, but would fail in six and higher-

orders due to hextuple excitations. On the other hand, any approximation to

the linked diagram theorem, Eq. (27), is size-extensive. This means that even

second-order perturbation theory can be much better than very good CI calculations

for sufficiently large molecules.

For small molecules, multi-reference CI techniques, that incorporate

at least the most important quadruple excitations as double-excitations from

a double-excitation reference space, will be size extensive for most practical

purposes. GVB calculations are size-extensive, but GVB-CI will be only approxi-

mately size-extensive unless all excitations into the GVB orbitals are included.

j Since GVB provides a better choice of orbitals than SCF, and since one includes

higher-level excitations than is normal in SCF based CI approaches, GVB-CI

I will usually be closer to size-extensive than other CI methods. An added

advantage is that within the GVB method it is often possible to ensure

correct separation.

The other important idea developed in many-body theory is the

cluster expansion of the wavefunction. The basic concept is that the correct

wavefunction may be written as e 10 >, where T is an operator. This form of
the wavefunction ensures the linked-diagram, size-extensive basis of the theory.

IV
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Then T has the form

T = T1 + T2 + T3 +... (28)

I where T, T2, ... are one-body, two-body, ... cluster operators. The T2

I operator generates double-excitations with amplitudes to be determined by

the coupled-cluster equations, (5-7) but the exponential formI
eT = T + 1/2T 2 + 1/3!T 3 + (29)

causes some very different things to happen than in the CI approach. To see

this, consider the CI operator for quadruple excitations, C4. By equating

the CI and coupled-cluster expressions for the quadruple excitations, we have

C4 = T4 + /2T2 + 1/4 TI4 + 1/2 TT 2 + TT 3  0)

Physically, what does this mean? Roughly, T4 represents an interaction

among four electrons while T2 represents two simultaneous interactions of

two electrons. A transformation to Brueckner orbitals makes T1 vanish, while

T1 is usually small even for SCF orbitals so the final three terms are

I negligible most of the time. Since the normal electrostatic hamiltonian has

I no more than two-electron operators, simultaneous two-electron interactions

would seem to be much more frequent in molecules, than "true" four electron

I interactions. From another viewpoint, the NH2 lattice problem emphasizes

the neglect of simultaneous double-excitations on different H2 molecules,

which is exactly what T2 offers. Thirdly, from perturbation theory, it may
. ,be shown that all the fourth-order quadruple excitation terms arise from T 2(7
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I with T4 only contributing in fifth- and higher-orders. Consequently, it

was suggested by Sinanoglu(14) that C 1/2T 2 is a very good approximation.

I Using this ansatz, we have the coupled-cluster doubles (CCD) approximation

for the wavefunction, e [ o> . This leads to a set of nonlinear equations

for the T2 amplitudes but there are only as many of these amplitudes as in

a D-CI (5'7 ) This provides the benefit that we have a size-extensive method; it

is infinite-order although restricted to T2, and we have no more amplitudes

that in a D-CI calculation even though the effect of quadruple excitations

are included. Since CCD reduces in fourth-order perturbation theory to double-

and quadruple-excitation diagrams, it is straightforward to solve the CCD

equations as successive iterations of a fourth-order MBPT calculation (7).

Hence, couple-cluster methods may be viewed as complementary to MBPT when

higher-order corrections are needed as can become important in pathological

cases.
9)

I

I

I

"~.4 ! .. 1 II i J '"" ;
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IV. ILLUSTRATION OF MBPT/CCM RESULTS FOR SOME SMALL MOLECULES

I The simplest approximation to the correlation energy in MBPT

(assuming an SCF reference function for simplicity) is given by the second-

I order perturbation theory expression of Eq. (22).

j Since the molecular orbitals i, j, ...a, b,... and their orbital

energies ei , Ej ... Ea, Fb' are obtained from an SCF calculation, all the

information is available that is needed for a correlated calculation except

for a partial integral transformation, if used. The SCF calculation generates

a set of two-electron integrals relative to atomic (i.e., primitive) basis

functions, and in the general case an integral transformation is required

to obtain the integrals relative to the molecular orbitals, i.e., <abllcd>,
5

which depends on the number of basis functions as n ; or, alternatively, a

direct calculation of E2, E3, in terms of the integrals relative to atomic

orbitals (probably orthogonalized) is required. In the case of E2, however,

only a very small number of integrals are required, since each integral

involves only two occupied and two unoccupied orbitals. Consequently, E2
2 2 4requires no more than n2 n <n operations, or less than in the SCF calculationocr exc

itself. In a sufficiently large molecule where the primitive integrals (asly6)

I' vanish unless a and B are in the same neighborhood as are y and 6, and

unless the charge distributions (aB) and (ys) are not too far apart, the SCF

hI 2
calculations goes as ^n . In this case, evaluating E2 directly in terms of

S(cy ) will permit a similar simplification, hence E2 can always be

evaluated as a by-product of large SCF calculations at negligible additional

I: expense.

This approximation is certainly recommended by convenience, but

how reliable an approximation is it for the correlation energy? In Table II
16
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1
are shown the fractions of the correlation energy within a basis set given by

E2, E3, and the fourth-order contributions just from double- and quadruple-

(7,9)excitations diagrams for a variety of molecules. Using an SCF starting

point, E2 and E3 are solely determined by double-excitations, with single-,

double-, triple-, and quadruple-excitations appearing in fourth-order, but

in the interest of also comparing the higher-order corrections obtained by

the CCD (coupled-cluster doubles) approximation, which includes only double-

excitations and the disjoint (i.e., T2) quadruple-excitations to all orders, the

single- and triple-excitations contributions are omitted from Table II.

It is apparent from the table that the simple second-order approxima-

tion accounts for the vast majority of the correlation energy obtainable

within the basis set. A few generalizations about the results may be made.

In multiply bonded systems such as N2, CO, and CO2, E2 tends to slightly

overestimate the net correlation energy in the basis set, while for

saturated systems like H20, CH4 , etc., it is more likely to underestimate the

effect. HCN and benzene are intermediate. In a case where near degeneracy

plays a role such as BH3, convergence of the perturbation theory is much

slower making E2 a poorer approximation. No particular differences are

observed for open-shell molecules when UHF-SCF instead of an RHF-SCF solution
t is used as the unperturbed solution. On the average, it is clear that E

accounts for -.90 percent of the correlation energy obtainable within the

basis set. Since these basis sets are good enough that they account for -70

(9)percent of the "experimental" valence shell correlation energy, this means

E2 gives %60 percent of the experimental valence correlation energy. It is

also clear that DQ-MBPT(4) is usually very close to the infinite-order

CCD model g. This is a common occurrence except for cases where near degeneracy

is a problem.

.. .... .lI . .
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!
In Table III are shown some thermochemical results obtained from E2

compared to higher-order correlation approximations. Although E2 predictions

I are not as good as the better approximations, they are clearly superior

to the SCF predictions, again, providing most of the observed correlation

corrections.

A similar result can be obtained for second-order predictions of

molecular structure, where on the average -v50 percent of the error in the

SCF geometries is removed.(11)

To obtain the exceptional accuracy reflected in Table III and

reported elsewhere( 3  54) for various properties of small molecules, it is

necessary to go beyond second-order, but for large molecules, the simplicity

and comparatively high accuracy of this approximation demands that it be

used to augment any large-scale SCF calculation of biochemical interactions.

Benzene serves as a prototype of many of the large, conjugated

molecules that occur in biochemistry. As such, it is appropriate to

analyze the higher order MBPT/CCM description of electron correlation in

benzene to develop some feeling particularly for the effect of quadruple

excitations.

The basis set is a standard Dunning double zeta contraction of

Ii Huuzinaga's 9sSp primitive Gaussian basis for carbon and the two H Is orbitals

corresponding to a Slater exponents of 1.2, giving 72 CGTO. The SCR energy

of -230.6369 differs by 0.113 a.u. from the SCF results for a DZP basis and 0.18

a.u. from the estimated SCF limit. (58) The C(15 2) electrons are kept frozen

at the SCF level so the correlated calculations only pertain to the valence

correlation energy. Polarization functions are usually found to be more

important for correlation effects than in the SCF calculation itself, so the

current DZ predictions should underestimate the magnitude of
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i the valence correlation energy. Even so, it is apparent from Table IV, that

quadruple excitations amount to -.20 percent of the predicted correlation energy.

In an attempt to study the origin of the quadruple excitation effects,

I the occupied and excited pi-orbitals were removed and the calculation repeated

to give a value for just the sigma framework excited solely into unoccupied

sigma orbitals. The same procedure was carried out for the pi-electrons.

These results are reported in the second and third columns of Table IV.

The sigma framework accounts for over half of the net quadruple

excitation effect, while the correlation effects of the delocalized pi-electrons

are relatively independent of the quadruple excitations. Since the former

involves 12 roughly independent covalent bonds, from Table I and Eq. (14),

one would estimate an effect of %14 percent in reasonable agreement with the

calculated 12 percent. The effect of the quadruple excitations on the pi-

electron bonds is much smaller, but this is primarily due to the fact that only

three bonds are possible. If the appropriate S for the pi-structure were as

small as in He, the estimated effect of quadruple excitations would be 1.6

percent. The remaining correlation effects come from the sigma-pi interactions.

J It is interesting that excitation of sigma electrons into pi-excited orbitals

h i and vice-versa results in 03 percent of the correction energy.

1 The DZ basis used here is capable of providing only about 49 percent

* (58,59)5 of the experimental valence correlation energy. Polarization functions

would improve this result by about 20 percent. Since the quadruple excitations

are also responsible for more than 20 percent of the correlation energy, the

I
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!
size of error encountered in SD-CI is as severe as excluding polarization

I functions from the basis set. Since the effect of quadruple and higher CI

i excitations will inevitably increase as larger molecules than benzene are

studied, a correlation method that does not account for such effects has

little hope of contributing to the investigation of biochemical interactions.

II

,i I

I



26

I

i TABLE I. ERRORS IN D-CI AS A FUNCTION OF N FORI A LATTICE OF NH2 MOLECULES AND NHe ATOMS

I
H2  He

N Nef  % Error in Correlation Neff  % Error in Correlation
Energy Energy

2 1.97 1.5 1.98 0.8

4 3.81 4.8 3.91 2.4

6 5.54 7.7 5.77 3.8

8 7.19 10.1 7.58 5.2

10 8.77 12.3 9.35 6.5

20 15.8 21.1 17.6 12.1

50 32.0 35.6 38.2 23.6

1 100 51.0 48.0 65.2 34.8

1000 209.5 79.1 292.2 70.8

'I

' I
'I

I
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TABLE III. COMPARISON OF THERMOCHEMISTRY RESULTS
IOBTAINED BY SCF AND MBPT WITH EXPERIMENT

[All basis sets are at least DZP quality.]

I
-AE (kcal/mole)

Reaction Method SCF E2  MBPT/CCD Experiment

2 BH3 )B2H6a SDQ-MBPT(4) 18.5 37.5 35.6 36.6 + 2

BH3 + CO H3BCOa D-MBPT(4) 8.0 25.1 20.5 20.4 + 2f

BH3 + NH3 -o-H3BNH 3a D-MBPT(4) 20.5 32.0 30.1

HNC- .HCNb SDQ-MBPT(4) 10.7 18.0 15.0 (10.3 + 1)g

HNC [HNCIb SDQ-MBPT(4) -33.4 -30.1 -29.5

BNC BCNb SDQ-MBPT(4) -18.9 -9.8 -9.4

LiNC LiCNb SDQ-MBPT(4) -6.4 -2.3 -3.8

CH3NC +CH3CNC SDQ-MBPT(4) 19.2 26.2 22.8 23.7 + 14

CH3NC . [CH3N] c SDQ-MBPT(4) -44 -40 -40 -38.4 i

A CO+HCCdC

H + COHCOd  CCD 4.8 11.8 13.6 15.7 + 1.5

HCO [HCO]d CCD -12.8 -17.4 -18.1 --

H2CO -H 2 + COe CCD -7.2 -3.9 -3.9 -1.9K

H2CO -H + HCOe CCD -68.6 -82.8 -86.0 86.0 + l.O

A--
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a Reference [53].
bI b Reference [55]. Square bracket indicates a transition state.

This result includes a 4 kcal/mole zero point correction
I for the transition state.

c Reference [54]. Square bracket indicates a transition state.

This result includes a 4.8 kcal/mole zero point correlation.
for the transition state.

d Reference [56]

e Reference [57].

f T. P. Fehlner and G. W. Mappes, J. Phys. Chem. 73, 873 (1969).

g L. Maki, unpublished results. Reference [55] concludes that this experi-
mental value is in error. The result should be 15 + 2 kcal/mole.

h M. H. Baghal-Vayjovec, J. L. Collister, and H. 0. Pritchard, Can. J.

Chem. 5-, 2634 (1977).

i F. W. Schneider and B. S. Rabinovitch. J. Am. Chem. Soc. 65, 1794 (1969).

J P. Warneck, Z Naturforsch A26, 2047 (1971).
k K. Yamada, T. Nagakuru, K. Kuchistu, and 'Y. Morimo, J. Mol. Spect.

38, 70 (1971).
e R. Walsh and S. W. Benson, J. Am. Chem. Soc. 88, 4570 (1966).

* I

I
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FIGURE 1. ILLUSTRATION OF THE DEPENDENCE OF AN AB INITIO CALCULATION

ON THE BASIS SET AND ON THE QUALITY OF THE THEORY

SZ, SZP, DZ, AND DZP ARE RESPECTIVELY SINGLE ZETA,

SINGLE ZETA PLUS POLARIZATION, DOUBLE ZETA, ETC. CONFIGURA-

TION INTERACTION (CI) IS USUALLY ACCOMPLISHED BY ADDING

SINGLE AND DOUBLE EXCITATIONS. MBPT AND CCM IN GENERAL

EXCEED SD-Cl IN ACCURACY SINCE EFFECTS OF HIGHER EXCITATIONS

ARE INCLUDED TO SOME DEGREE. MR-CCSD INDICATES COUPLED-

CLUSTER THEORY LIMITED TO eT2+ T2 BUT RELATIVE TO MORE THAN

ONE REFERENCE FUNCTION. THE BEST POSSIBLE SOLUTION IN A

BASIS SET IS FULL CI.

--
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I ABSTRACT

I A numerical procedure for efficiently solving large systems of

linear equations is presented. The approach, termed the reduced linear

I equation (RLE) method, is illustrated by solving the systems of linear

equations that arise in linearized versions of coupled-cluster theory.

The non-linear coupled-cluster equations are also treated with the RLE

by assuming an approximate linearization of the non-linear terms. Very

efficient convergence for linear systems and good convergence for non-

linear equations is found for a numberof examples that manifest some

degeneracy. These include the Be atom, H2 at large separation, and the

N2 molecule. The RLE method is compared to the conventional iterative

procedure and to Pade approximants.
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I. INTRODUCTION

The basis idea of the coupled-cluster method (1-7) relative to

a single reference function 10>, is that the exact wavefunction may be

written as T = exp( T)I > where

T = T1 + T2 + ... (1)

and the excitation operators {T n } are

= .abc... + + + (2)
n  ijk XaXbX c  k.X.

By back-projecting T onto 0 and a sufficient number of single, double, etc.

excitations, non-linear algebraic equations of the form

a i + I B t + 1/2! 1 Cijktjtk + 1/3! D 0ijktjtkt... x 0 (3)
j ii i j k j,k, i

occur. The quantities {tja are the amplitudes t bc.. I of Eq. (2) which

ijk ...
are to be determined, while ai, Bi, Cijk etc., are simply combinations of

molecular integrals. Unlike eigenvalue equations, the coupled-cluster

equations are independent of the energy attesting to the linked-diagram,

size-extensive natureof the theory.
(7 )

In most of the applications which have been mad -lO) the trial function

SCCD = exp(T2 )I¢> has been employed, which terminates Eq. (3) after quadratic

terms,

TCCD = (l+T2+1/2T 2 )IO> (4)

(7-9)This model is referred to as coupled-cluster doubles (CCD) "  or by Cizek as

coupled-pair many-electron theory (CPMET). (3,4)

4 - -
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Another model called coupled-cluster singles and doubles CCSDT1 +T2
can be defined by TCCSD = e TT >, which requires that T1 be included

through the quartic terms while T2 still appears only quadratically.

Since it is well-known that T1 can be completely eliminated by a transforma-

tion to Brueckner orbitals and that Tj is usually small for closed-shell

(or UHF open-shell) SCF orbitals, the full CCSD model appears to be

unnecessarily complex. Consequently, the simpler approximation which

includes T, only linearly, and which we will refer to as CCSD-l, is

considered. (In Paldus, et. al! 5 ) this is referred to as approximation B).

The trial function then becomes,

= (1 + T1 + + I/2T 2I0> (5)CCSD-I

In Eqs. (4) and (5) a linearized version excluding the quadratic

terms T2 has also been considered, both as a model and as a first approximation

to the solution of the non-linear equations. In the case of CCD, this L-CCD

model corresponds to the sum of all double-excitation diagrams to all orders,

*while L-CCSD includes the single excitation diagram as well. Both models are
€ (11,12)

size-extensive as required by the linked-diagram theorem. If the L-CCD

or L-CCSD wavefunction were used in an expectation value formula to obtain the

amplitudes, the non-size-extensive D-CI and SD-Cl models would then emerge.

In general, the quadratic term T2 results in a net positive contribution as

explained elsewhere" 7) hence the L-CCD and L-CCSD models, though size-

extensive, often provide correlation energies which are too low for the

basis set. Since most of the other neglected terms like T3 also result in

negative values, however, the net error is normally small, except for

pathological cases usually involving near-degenercies where the damping

effect of the T2 term is quite important 7 ,13)

Tm
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Perhaps the most straightforward approach to the solution of

Eq. (3) is to employ Iterative techniques. Such successive iterations of

Eq. (3) lead to various terms in the linked-diagram perturbation expansion,

I thereby providing a means to sum classes of MBPT diagrams to all orders. (3)

This iterative method of solution makes it convenient to solve the coupled-

cluster equations with the same techniques that are used to sum MBPT

diagrams.( 7,8 ) The rate of convergence can usually be significantly
(14,16

enhanced by employing Pade approximants, hich are simply resummations

of the energies that come from successive iterations of the equations.

However, there can be some difficulties with a straight-forward iterative

approach.

For example, if the reference function used in the theory were

comparatively poor it is unreasonable to anticipate that good convergence

using a first-order method will occur. This has been demonstrated for N2(17)

(7 )2and Be2  , and will occur in almost any case where near degeneracies are

a problem. (13) A common example in molecular theory is found when employing a

restricted Hartree-Fock (RHF) solution as a reference function at large

j internuclear separations, where the RHF function erroneously separates to

ionic products. H is a good example of this problem, since the la2 'u

configuration becomes degenerate with the 102 RHF configuration at large• . . (l18-20)_
separations. Also, Eq. (3) has many solutions, so convergence to

undesirable solutions is also possible. In some cases pertaining to

excited states and excitation energies, it is necessary to obtain these

other solutions to Eq. (3).(19,20)

An alternative method of solving Eq. (3) for the CCD case, has also

been used. 5) This method neglects the quadratic term initially, solves

the set of linear (L-CCD) equations exactly (perhaps by matrix inversion or

-- - - --- -
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I by iteration), and then uses a Newton-Raphson technique for the quadratic

part.(5) A few repetitions of this procedure provides the solution. The

main objection to this approach is that the linear terms tend to be negative

l while the non-linear contributions to the solution are positive. A simul-

taneous solution embracing both terms seems to be preferable to exploit the

partial cancellation. In particular, an initial exact solution of the L-CCD

equations tends to provide {t.} that are often far away from the correct CCD

{t. In fact, the largest differences between CCD solutions and the L-CCD
patoloica caes(7,13,17)

solutions occur for pathological cases, which is exactly where improved

methods of solution are required.

In an attempt to improve the convergence of the solution to the

coupled cluster equations, we have investigated a technique originally

proposed for configuration interaction (CI) eigenvalue equations termed

the reduced partitioning (RP) procedure.(2
1-24 )

In the CI case, the basic idea of this reduced partitioning

technique is to drastically reduce the effective dimension of a CI eigenvalue

problem, which is typically very large, by making a rectangular transformation
'I

of the CI hamiltonian matrix to a set of m trial functions (where m is small).

The similarity with moment theory(25) the Lanczos algorithm(26 ) and Davidson's

b method for eigenvalue problems(27) is evident. In the following sections we show

Ithat it is also possible to use a reduce partitioning approach for linear

equations. We also show that thisreduced linear equation method can be used

to improve convergence for the non-linear equations of the type that occur in

coupled cluster theory.

In the following, this technique is described and illustrated

by application to a few simple cases.

* 1. .. . .

... . -T _ o . . . .. . . . . ..... . .. .. . . . . . . .. .. .. .. . . . .
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I II. THE REDUCED LINEAR EQUATION METHOD

The linear approximation to the coupled cluster equation (3) can

be written in matrix form asI
a + Bt = 0 (6)

where t and t are column vectors and B is a diagonally dominant square matrix.

In the L-CCD model, t will be a vector with a length equal to the number of

double excitations. For a closed shell molecule with n electrons and N basis

functions, roughly n2N2 excitations are possible. Even if a molecule has

twenty electrons and one hundred basis functions, vectors the length of t can

be conveniently manaqed on most medium-sized computers.

On the other hand, B is a square matrix and the number of elements

which must be processed depends upon the square of the length of t. In the

L-CCD model, we would have to consider up to n4N4 elements in B - despite

the fact that most of the elements are zero. For the model problem of twenty

S I electrons and a hundred basis functions, the construction, storage and manipula-

tion of B as a matrix becomes impractical.

Fortunately, B is constructed from a matrix containing only 
N4

I elements, i.e., the molecular integrals, and efficient programs have been

written which construct the products, like k directly from the N4 elements.

* This is implicit in most many-body approaches and has also been exploited

in direct CI techniques. 8,29)Thus, the n4N 4 bottleneck is broken by never

constructing B. Instead, a program taking as input a trial vector t( ) and
4 (m+l)

the N4 integrals directly yields a new quantity , which is used to

j find the solution t. Since is not available, most standard methods for

solving systems of linear equations are not applicable.I
I
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One simple iterative scheme can be derived by partitioning ( into

a diagonal matrix D and a non-diagonal matrix k. Since D has only the same

number of elements as t, D can also be managed on a computer. With this partition-

I ing, Ea. (2) can be rewritten as

t t - -(7)

t=-I (a+ t) (8)

Eq. (4) is easily changed into a first-order iterative equation

t (m+l) = ,- I ( (M)) (9)

where t (m) is the mth iteration of Eq. (5) and where usually (0) = O.

If all the diagonal terms in are placed into Q so that the

diagonal of A is zero, then Eq. (5) is the Jacobi method for solving

linear equations.(30) Under these conditions, Eq. (9) is the same as

the perturbation equation for the L-CCD model assuming an Epstein-Nesbet

partitioning of the Hamiltonian.(31)

* ,i In the past, the M~ller-Plesset partitioning(32) has been demonstrated

to be the best choice for solving perturbation or cluster equations. (16) The

I M~ller-Plesset partitioning places the diagonal effective one-body terms

(e.g., orbital energies) into D and leaves the two-body terms in A. The

resulting iterative method is similar to the Jacobi method with over relaxation,

I however, here there is a different relaxation parameter associated

with each diagonal element.T
The slow convergence of the Jacobi method and related methods is

well-known. To obtain more rapid covergence for the iterative solution of the

I
!I
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coupled cluster equations, we have adapted the reduced partitioning (RP)
(21-24) In the RP method,

method previously applied to the eigenvalue problem.

the approximations obtained at each iteration are saved and then used on

Isubsequent iterations to provide a subpace onto which Eq. (6) is

projected and in which the projected system of equations is solved.

For example, if m s are available, then we set up a

system of m-l equations

R= . (10)

where

R t~(i) B tB
i k k kZ 

=: 2 t~i  (Dkz + Akz) t~j  (11)

kZ

t(i) D t(i)t( a
k kkk kt~ ~)k k k

and where
(i)

li tk ak (12)

Once T is determined, the best approximation to T using m t(i)'s is

t-] : m ( (13)i-1I m-1

The superscript [i] on t indicates that T has been obtained from m t(i)'.i

t~m] will be the same length as t. As can be seen from Eq. (8) and (9), the

matrix elements for R and a are easy to evaluate since they are only weighted

overlap integrals between trial solutions of different iterations, giving

Eq. (10. This small matrix problem

i _-
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i can then be solved with standard algorithms specifically designed for

approximately singular matrices. It is important to note that the R matrix

rapidly tends to singularity. However, when R is singular then tm3 has

I probably remained unchanged for at least one iteration and we already have

a solution.
Notice that it is optional whether the vectors i) are not

solutions or whether increments (i.e., successively higher orders "perturbation"

corrections to the vector) are used, since the two approaches are related by

a linear transformation. The latter approach is the choice in the RP
1,22)

eigenvalue problem since the matrix elements in Eq. (10) could be

conveniently related to perturbation energies and overlaps of perturbed wave-

functions.

In the following examples, the Jacobi type iteration scheme (c.f.,

Eq. (9))has been used to generate the basis {tM1 in which the reduced

linear Eq. (10) is solved. Thef{[n]} could provide an alternative basis;

however, the convergence properties for the L-CCD and L-CCSD models would remain

unaltered and a time consuminq step-the construction of {tLnJl would have been added.

Thus far we have described methods for solving linear equations.

The general coupled-cluster equations are non-linear and it is of interest

to ask whether the reduced linear equation method can be used for solving a

t! matrix equation of the form of Eq. (3). As a simple first step, the

quadratic term in Eq. (3 ) is written as an effective linear term

Yt Gijktk (14)

so that a general pseudo-linear version of Eq. (3) limited to quadratic terms

can be writton as
•( =(15)

a + .t
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I where ( ) is + X(t). If we partition 8 (t) into a diagonal matrix which

does not depend upon t and a non-diagonal matrix A(t) which does depend upon

S~t, then equations (9),(ll),(12), and (13) can still be used providing A(t )

is used whenever & is specified. If the sequence

(1) t(2) , ..) (16)

converges, then the sequence of solutions

[l) [2] M]) (17)

to the reduced linear equations

R(m),[mn] Cm)
=tT ( m = 1, 2, 3, ...M (18)

will converge to the same t as the sequence in Eq. (14). If the iterative

solution to Eq. (9) diverges, then the sequence of solutions to the reduced

linear equations does not necessarily converge since B (t) and R(t) do not

converge. Consequently, for the non-linear equations, it is useful to take

the best available solution (i.e., t[m]) and use it to define p(t[m]). Thus,

a suggested process for non-linear equations is

(m+l) .)-l m (m) (19)

Alternative schemes for handling the problems of non-linearity in a linear

- framework may be envisioned. Such schemes must address questions concerning

consistency of the final solution and the rate of convergence. In the following,

.4 we will apply the simple linearization method of Eqs. (14) and (15) to several

linear and non-linear coupled cluster examples to illustrate the relative speed

of convergence using the reduced linear equation (RLE) approach and for the

simple linearization discussed above for the non-linear equations.

" .

i i
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III. DISCUSSION OF RESULTS

As a first example of the RLE technique consider the Be atom.

In Table I are shown results for the two linearized coupled-cluster models,

L-CCD and L-CCSD and the non-linear CCSD-l model. The GCTO 7s3p basis is

the same that has been used previously (33 ,7) and is within 9xlO 5h of the

SCF limit. Since in Be, the 2s and 2p orbitals are close in energy, the ls
22p2

configuration is expected to be relatively important compared to the Is
2 2s2

reference configuration in the correlated wavefunction. In the intermediately

normalized wavefunction, the correlating Is22p2 configurations have coefficients

of 0.14 for CCSD-l and 0.16 for L-CCSD while other double-excitation configura-

tions involving this 2p orbital have coefficients about half as large. The

remaining coefficients are <0.05. This might be compared with a problem like

H20 at equilibrium where the largest coefficient of any configuration is

0.049.(8) This feature manifests itself in comparatively slow convergence of

perturbation theory for Be, as seen in Table I. On the other hand, the Pade

approximant resummation is far more effective, and the reduced linear equation

approach for the linearized models exceeds the convergence of the Pade

approximants.

The first cycle of perturbation theory is the second-order M~ller-

Plesset energy(32) while at least the third-order perturbation result needs

to be computed before either the [1,0] Pade approximant [i.e., E2/(l-E 3/E2),

t'e geometric approximation] or the first cycle of the RLE is possible. In fact,

,4 for the linear theories it is possible to get two perturbation energies per
otenr to(16)

iteration, using a version of the 2n+l rule of perturbation. This is

not in general applicable to the non-linear coupled-cluster iterations, however.
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The similarity between E2+E3, obtained from the second-cycle of

perturbation theory, and the [1,0] approximant attests to the relative

smallness in this example of E2/E and the other higher-order differences

that distinguish the [1,0] approximant from E2 + E3. Anologously, the Pade

approximants and the RLE results are also closely related, differing primarily

in that an exact matrix problem is solved in the RLE case, while the Pade

approximants offer an increasingly good approximation to the matrix equation

solution. (15)

For the non-linear CCSD-l equations, again the Pade analysis and

the RLE analysis; assuming the simple linearization of Eq. (14) are vastly

superior to the order-by-order iterative solution. However, the first-order

iterative convergence for CCSD-l is superior to that observed in the

linearized models. This is because the incorporation of the quadratic, and

2positive, T2 term, into the iterative cycle enhances the speed of convergence,

since acts as a damping factor on the negative linear terms. In practice,

two iterations of the linearized equation are made, followed by the first non-

linear iteration. All subsequent cycles embrace a linear and non-linear iteration.

The main advantage of the Pade approximant analysis compared to

the RLE, is that the Pade approximants are obtained solely from the energies
(16)

computed at each iteration. Once the energy is calculated, previous t vectors

can be discarded. In the RLE, the matrix in Eq. (10) needs to be computed,

and this requires overlaps among the different iterative cycles, which requires

that these quantities be retained on mass storage. The Pade approximant

analysis also has its disadvantages, however, in that they do not provide

wavefunction information conveniently. .i the RLE, the solution of the matrix

problem gives a highly accurate representation of the wavefunction along with
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the energy. In cases where t has not yet converged the RLE solution is

available and exactly corresponds to the RLE energy. The RLE solution is

also compact in the sense that it consists of just a few coefficients for

the different t vectors. This can sometimes have advantages when using the

wavefunction in different contexts, such as the prediction of second-order

properties. (24)

Another difficult example for convergence of the coupled-cluster

equations is offered by H2 at large separation. In this case, the reference

10 configuration becomes degenerate with the correlating double excitation,g

l0 . Any attempt to determine such a potential curve with only a single

RHF reference function and finite order perturbation theory will become

suspect at sufficiently large internuclear separation.

This is illustrated very clearly in Tables II and III, where results

for R = 1.2 and R = 6.0 a.u. are compared. The L-CCD results converge reasonably

well in the first case ('lph), but remain 0.4 hartrees in error through the

same cycle at 6a.u. This behavior is also reflected in the coefficient of

the la configuration which is 0.06 at 1.2 a.u. and 0.9 at 6.0 a.u. It is also

evident that the L-CCD result is much too low at 6.0 a.u. compared to the CCD

and CCSD-l values, and in fact, will tend to minus infinity at large R due

to singularities in the energy denominator. On the other hand, the L-CCD

result is not very different than the CCD or CCSD-l values at 1.2 a.u. For a

problem with the degeneracy illustrated here, it is extremely important to

retain the quadratic T2 terms to provide a reliable answer.
( 7 )

As is found for Be, the non-linear CCD and CCSD-l models show markedly

better convergence than t!,e L-CCD model. Whereas at 1.2 a.u. the improvement is

I .. .. ....
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comparatively slight, at 6.0 a.u., there is a dramatic difference. In fact,

the first-order iterative CCD solution converges as fast as the RLE or Pade

approximants. The CCSD-l has somewhat poorer convergence probably due to

the failure to include T1 and T T into the model.
Figure I compares the size of the increments between successive

cycles for the different models, the first-order iterative approach, the

[N,N-l] and [N,N] Pade approximants, and the RLE results for the L-CCD and

CCD solutions for H2 at R=6.0 a.u. Rather than showing the convergence to

a final result, this figure perhaps offers some idea of the stability offered

by the different methods used to converge the solutions. The solid points

refer to the non-linear CCD results, utilizing the simple linearization

techniques of Eq. (14).

It is clear that the most stable results even for this highly

degenerate problem are offered by the RLE solution to the L-CCD equations.

The Pade approximants are very good, but they still tend to fluctuate at the

+ 10-8 level. The standard iterative, perturbation procedure retains large

--

increments at about the 10~ level in all cycles shown.

For the non-linear CCD equations, there is little difference

between the RLE, Pade, and straightforward iterative techniques. None of

the approaches offer as much numerical stability as the RLE does for the

linear problem. Rather the RLE and the Pade approximants tend to reduce

the increment to -l0-9 in the 8-10 cycles, while even the iterative procedure

-8goes down to <10 . Again it is very clear that the iterative approach is

vastly superior for CCD compared to L-CCD for this pathological example.

Strictly speaking, the [N,N-l) and [N,N] Pade approximants correspond to

two separate sequences, and their increments should be compared in that

'0' " a f manner, but for tOU exaaple.there is no appreciable.eifference.

.. -i -- . ..Z _ - - -- -.. - - -.--- . ... . . . . -a - . . . . . . . ... . . . . . . .. . . . . . .. . .. . . .
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i Very accurate convergence of the CCD solution has been found to be

necessary to obtain the highly sensitive quartic force field that we haveI fo the moleule.(8)
reported for the H20 molecule. In this example, convergence to less

than 10-10 could be readily detected in the force field determination.

In a final example, in Table IV, results for the CCD and CCSD-l

models for N2 are presented. At R=3.0 a.u., the bifurcation into separate

(17)RHF and UHF solutions for N2 has already occurred, causing a decided

lack of stability in the RHF based coupled-cluster models. For example, some

of the double excitation coefficients are already as large as 0.22, with

several others lying in the range 0.11 to 0.06.

Except for the much larger number of electrons and the earlier

onset of the instability, N2 behaves very much like H2, in that an L-CCD

solution, even at 3.0 a.u. will be much too negative and highly slowly convergent,

while the CCD and CCSD-l provide more realistic results. Again, the Pade

approximants and RLE give relatively good convergence to the solution, both better

than the iterative technique. The larger number of electrons does not seem to

require that more cycles be run to get the solution, even though it is clear

that the iterative technique is poorer for N2 than in H2.

In conclusion, the reduced linear equation approach has been shown

to be very efficient, accurate, and convenient for obtaining solutions of

linear coupled cluster equations. This may have importance for solving a

wider variety of linear equation systems. The RLE coupled with a simple,

approximate linearization of the non-linear equations, is somewhat less

satisfactory, but still at least as good as other techniques, and much better

than a straightforward iterative approach. More sophisticated ways of

b.
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incorporating the non-linearity of the general coupled cluster equations

that still give a quasi-linear system may be found that would allow the

I RLE approach to function more efficiently. The main advantage of the RLE

procedure compared to a Pade approximant analysis, is the ease of obtaining

the coupled-cluster wavefunction in addition to the energy.
I

1 II

~1

1
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Figure 1. Increments between successive cycles in the convergence of

the L-CCD and CCD equations for H2 at R = 6.0 a.u. Solid
points refer to the L-CCD equations and open points to the
CCD equations.
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